Vegetation segmentation for boosting performance of MSER feature detector

نویسندگان

  • Dušan Omerčević
  • Roland Perko
  • Alireza Tavakoli Targhi
  • Jan-Olof Eklundh
  • Aleš Leonardis
چکیده

In this paper, we present a new application of image segmentation algorithms and an adaptation of the image segmentation method of Tavakoli et al. to the problem of vegetation segmentation. While the traditional goal of image segmentation is to provide a figure/ground segmentation for object recognition or semantic segmentation to assist humans, we propose to use image segmentation in order to boost performance of local invariant feature detectors. In particular, we analyze the performance of MSER feature detector and we show that we can prune all features detected on vegetation to gain a 67% speed-up while accuracy of image matching does not decrease. The image segmentation method of Tavakoli et al. that we adapt to the problem of vegetation segmentation is based on singular value decomposition (SVD) of local image patches, where the sum of the smaller singular values describes the high frequency part of the patch. The results of the automatic segmentation of vegetation show that the average overlap between manual and automatic vegetation segmentation is 33% and that the automatic procedure for vegetation segmentation can prune 25% of MSER features, resulting in 33% faster image retrieval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salient regions detection in satellite images using the combination of MSER local features detector and saliency models

Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection.  In most of these met...

متن کامل

Indexation et recherche d'images par arbres des coupes. (Image indexing and retrieval using component trees)

This thesis explores component trees, hierarchical structures from Mathematical Mor-phology, and their application to image retrieval and related tasks. The distinct com-ponent trees are analyzed and a novel classification into two superclasses is proposed,as well as a contribution to indexing and representation of the hierarchies using den-drograms. The first contribution t...

متن کامل

Evaluation of the Parameters Involved in the Iris Recognition System

Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...

متن کامل

SAR image segmentation using MSER and improved spectral clustering

A novel approach is presented for synthetic aperture radar (SAR) image segmentation. By incorporating the advantages of maximally stable extremal regions (MSER) algorithm and spectral clustering (SC) method, the proposed approach provides effective and robust segmentation. First, the input image is transformed from a pixelbased to a region-based model by using the MSER algorithm. The input imag...

متن کامل

Performance Evaluation of Local Descriptors for Affine Invariant Region Detector

Local feature descriptors are widely used in many computer vision applications. Over the past couple of decades, several local feature descriptors have been proposed which are robust to challenging conditions. Since they show different characteristics in different environment, it is necessary to evaluate their performance in an intensive and consistent manner. However, there has been no relevan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008